	Measurement (Learning outcomes by syllabus	
10916 2.13.	reference: OP1, part OP2)	
HOW MANY	4 – 5 lessons	
LESSONS?		

KEYWORDS / TERMS TO BE TAUGHT				
Length	Area	Volume	Mass/matter	
Metre (m)	Metres squared (m ²)	Metres cubed (m ³)	Kilogram (kg)	
Metre stick	Callipers	Vernier callipers	Electronic balance	
Opisometer	Trundle Wheel	Measuring cylinder	Overflow can	
Beaker	Meniscus	Units	Regular/Irregular	

KEY CONCEPTS IN THE LESSON (OBJECTIVES)					
What students must	What students should	What students could			
<i>know or be able to do</i> To be able to give examples of measurement from everyday experience To be able to measure length, area, volume and mass using	<i>know or be able to do</i> To be able to select appropriate methods for measuring volume in a variety of circumstances Reinforcement: To be able to write up experiments in a	To be able to manipulate volume formulae to calculate an unknown quantity			
appropriate equipment	systematic way				

SEQUENCE OF LESSON

1. Introduce the concept of measurement. Seek level of prior knowledge of class. Allow students to relate personal experiences of measurement. This could be facilitated by using the *Measurement Introduction* PowerPoint,

handing out concrete objects, performing measurements at appropriate slides and encouraging student input during the presentation.

2. Carry out experiments in groups to perform measurements. Discussion of key vocabulary, results and conclusions.

3. Students record results and write up experiment as they are doing the practical work.

4. Review – whole class discussion/dissemination of ideas/extra information. Possibility of using the strategies set out in *Tackling Word Problems in Science and Mathematics* in the *Toolkit* section of this

resource pack, to help students to develop skills in solving word problems.

5. Further class work/homework – see *Measurement Worksheet*.

Extension challenges for more able students.

1. DIFFERENTIATE BY CONTENT (In what ways can I vary the content of					
what I am teaching?)					
(A) Complexity of content: (concrete, symbolic, abstract)					
Concrete	Symbolic	Abstract			
Real materials					
associated with	Units of measurement and their symbols, Illustrations, images of measurement	W/by do wo moosuro?			
measurement, e.g.		Approxiation of the			
rulers, metre sticks,					
opisometers, trundle		significance of			
wheels, callipers,					
vernier callipers,		daily lives and in			
measuring cylinders,		science			
electronic balance					
(B) Variety of resources					

As listed above. Also potential use of school grounds for further exploration of material related to measurement.

(C) Variety of learning environments

Classroom, school laboratory, school grounds, e.g. curved lines of basketball court

2. DIFFERENTIATE BY PROCESS (How will I teach the lesson?)

Sequence of lesson as laid out above

- Introduction using concrete or symbolic material or a general class discussion
- Divide class into groups. Assist the students, as required, to plan, carry out the experiment, record results and draw conclusions as appropriate. Enable the extension of students' thinking and language use. For resources, guidance and support related to facilitating student experiments and investigations, see <u>www.juniorscience.ie</u>

3. DIFFERENTIATE BY OUTCOME / PRODUCT

(How will the student demonstrate understanding?)

See *Worksheets*, *Classroom Activities* and *Experiments* sections of this resource pack.

- Students may use a template from the *Experiments* section to assist them with the write-up.
- Whole class review work completed at end of class
- Homework: *Measurement Worksheet* if not used for class work. Specify time to be allocated to this work at home

	FINALLY - ANY OTHER POSSIBILITIES FOR THIS LESSON?
٠	Estimating various measurements and then measuring them
•	Collage of scenes showing measurement
•	Other written activities, e.g. a log of the different types of measurement
	and units encountered by students in one day
•	Extension exercise: How can we measure something very big?
•	Cross-curricular links: Maths
•	Internet search for material on measurement
•	Suggested Internet links include www.juniorscience.ie,
	www.bbc.co.uk/schools, www.scoilnet.ie, www.skoool.ie and
	http://classroom.jc-schools.net/sci-units/matter.htm
•	For advice on enhancing curricular access through the use of mobile

 For advice on enhancing curricular access through the use of mobile ICT, see <u>www.laptopsinitiative.ie</u>