TOPIC 2.9:	Mixtures & Compounds (Learning outcomes by	
	syllabus reference: part OC3, OC12)	
HOW MANY	3 – 4 lessons	
LESSONS?		

KEYWORDS / TERMS TO BE TAUGHT					
Atom	Element	Compound	Molecule		
Mixture	Hydrogen	Oxygen	Carbon		
Magnesium	Iron	Sulfur			

KEY CONCEPTS IN THE LESSON (OBJECTIVES)					
What students must	What students should	What students could			
know or be able to do	know or be able to do	know or be able to do			
To be able to give	To be able to identify	To be able to list all four			
examples of mixtures	the properties of	differences between			
and compounds	compounds and their	mixtures and			
	constituent elements	compounds			

SEQUENCE OF LESSON

- 1. Introduce the concept of mixtures and compounds. Allow students to relate personal experiences of mixtures. This could be facilitated by using the *Mixtures & Compounds Introduction* PowerPoint and encouraging student input during the presentation.
- 2. Carry out experimental activities (compare iron sulphur mixture with the compound iron sulphide) in groups. Focus on safety. Discussion of key vocabulary, risks and safety rules
- 3. Review whole class discussion. Possibility of using *Definition Game* in *Classroom Activities* section of this resource pack to facilitate student understanding
 - 4. Further class work/ homework see *Mixtures and Compounds*Worksheet

1. DIFFERENTIATE BY CONTENT (In what ways can I vary the content of what I am teaching?)

(A) Complexity of content: (concrete, symbolic, abstract)

Concrete	Symbolic	Abstract		
Real materials associated with mixtures and compounds (e.g. sea water, air, iron, sulfur, iron sulfide)	Molecules of water, carbon dioxide, iron sulphide and magnesium oxide	Differences between mixtures and compounds		
(B) Variety of resources				
As listed above				
(C) Variety of learning environments				

2. DIFFERENTIATE BY PROCESS (How will I teach the lesson?)

Sequence of lesson as laid out above

Classroom, school laboratory, computer room

- Introduction using concrete material or a general class discussion
- Closely observe students as they perform the experiment. For resources, guidance and support related to facilitating student experiments and investigations, see www.juniorscience.ie
- > Possible use of *Definition Game* to facilitate discussion

3. DIFFERENTIATE BY OUTCOME / PRODUCT (How will the student demonstrate understanding?)

See Worksheets, Classroom Activities and Experiments sections of this resource pack.

- Students may draw molecules representing the compounds water, carbon dioxide, iron sulphide and magnesium oxide in their copies with short descriptions of their properties.
- Offer students a choice of learning activities. Students may design a
 poster, write a poem/song or create a radio documentary on tape
 describing the difference between properties of compounds and the
 elements that make them.
- Whole class review work completed at end of class
- Homework: Mixtures and Compounds Worksheet, if not used for class work. Specify time to be allocated to this work at home.

FINALLY - ANY OTHER POSSIBILITIES FOR THIS LESSON?

- Common mixtures and compounds in everyday life
- Collage of scenes showing mixtures and compounds
- Role play using students as individual elements in mixtures and compounds
- Extension exercise: How do the elements that make up a compound become chemically combined?
- Internet search for material on mixtures and compounds
- Suggested Internet links include <u>www.juniorscience.ie</u>, <u>www.bbc.co.uk/schools</u>, <u>www.scoilnet.ie</u>, <u>www.skoool.ie</u> and <u>http://classroom.jc-schools.net/sci-units/matter.htm</u>
- For advice on enhancing curricular access through the use of mobile ICT, see <u>www.laptopsinitiative.ie</u>